Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.04.18.537104

Résumé

Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the therapeutic potential of Mac1 inhibition, we generated recombinant viruses and replicons encoding catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced activity by ~10-fold, mutations to aspartic acid (N40D) reduced the catalytic activity by ~100-fold relative to wildtype activity. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, N40D replicated at >1000-fold lower levels while inducing a robust interferon response, and all infected animals survived infection with the mutant, but not the wildtype virus. Our data validate SARS-CoV-2 NSP3 Mac1 domain as a critical viral pathogenesis factor and a reasonable target to develop antivirals, while emphasizing the importance of amino acid identity in viral mutagenesis studies and underscoring the limitations of solely relying on in vitro viral replication studies for target validation.


Sujets)
Infections , Crises épileptiques
2.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.06.27.497816

Résumé

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, few have been described. Here, we report the structure-based development of several chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution X-ray protein crystallography, and binding evaluation with in-solution assays. Potent scaffolds were designed with in silico linkage of previously obtained fragment hits and ultra-large library docking screens of more than 450 million molecules. In total, 160 hits comprising 119 different scaffolds were discovered and 152 Mac1-ligand complex crystal structures were determined, typically to 1 [A] resolution or better. The structure-activity-relationships emerging from this study may template future drug development against Mac1.


Sujets)
Infections à coronavirus
3.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.02.07.479477

Résumé

The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
4.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.11.24.393405

Résumé

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

SÉLECTION CITATIONS
Détails de la recherche